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Abstract: Since the industrial revolution, human activities have both expanded and intensified across the globe resulting in accelerated 
land use change. Land use change driven by China’s development has put pressure on the limited arable land resources, which has af-
fected grain production. Competing land use interests are a potential threat to food security in China. Therefore, studying arable land use 
changes is critical for ensuring future food security and maintaining the sustainable development of arable land. Based on data from 
several major sources, we analyzed the spatio-temporal differences of arable land among different agricultural regions in China from 
2000 to 2010 and identified the drivers of arable land expansion and loss. The results revealed that arable land decreased by 5.92 million 
ha or 3.31%. Arable land increased in the north and decreased in the south of China. Urbanization and ecological restoration programs 
were the main drivers of arable land loss, while the reclamation of other land cover types (e.g., forest, grassland, and wetland) was the 
primary source of the increased arable land. The majority of arable land expansion occurred in the Northwest, but the centroid for grain 
production moved to northeast, which indicated that new arable land was of poor quality and did not significantly contribute to the grain 
production capacity. When combined with the current ‘Red Line of Arable Land Policy’ (RAL) and ‘Ecological Redline Policy’ (EPR), 
this study can provide effective information for arable land policymaking and help guide the sustainable development of arable land. 
Keywords: arable land; spatio-temporal characteristic; agricultural regionalization; driver; China 

 

Citation: WANG Liyan, ANNA Herzberger, ZHANG Liyun, XIAO Yi, WANG Yaqing, XIAO Yang, LIU Jianguo, OUYANG Zhiyun. 
Spatial and Temporal Changes of Arable Land Driven by Urbanization and Ecological Restoration in China. Chinese Geographical 
Science. https://doi.org/10.1007/s11769-018-0983-1 

  
 
 
1  Introduction 

Almost all anthropogenic activities rely on land re-
sources to meet the needs of a growing population. Ar-
able land resources are possibly the most valuable be-
cause they can be used for produce food. Competition 
over land resources is a global phenomenon. Competing 
interests may threaten food security when the land is 
high-quality arable land (Cao et al., 2008). The global 

population is expected to grow from roughly 7.6 billion 
in 2016 to 9.2 billion by 2050 (Roberts, 2011; Grafton et 
al., 2015; Delzeit et al., 2017), which will increase global 
food demand by 70%–110% (Bruinsma, 2009; Tilman et 
al., 2011; Kastner et al., 2012). As land use pressure 
continues to grow, ensuring the stability of arable land 
for agricultural production is important if food security 
is to be maintained in the coming century. Across the 
globe, China possesses 7% of the world’s arable land 
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and 20% of the world's population (Larson, 2013). This 
means that the amount of arable land per capitia (0.11 
ha/person) is well below the global average (0.23 
ha/person) (Brown, 1995; Long et al., 2012). Population 
growth is expected to continue, which means that compe-
tition over the already limited arable land resources will 
increase (Yang and Li, 2000; Nath et al., 2015). 

Since the implementation of the ‘Reform and Open-
ing-up Policy’ in 1978, China has undergone rapid ur-
banization accompanied by large increases in population 
and Gross Domestic Product (GDP) (Wang et al., 2012). 
For example, the speed at which these processes oc-
curred is shown by fact that 50% of the Chinese popula-
tion were urban residents in 2010, compared to only 
17% of the population in 1978 (Tian and Qiao, 2014). It 
is estimated that the Chinese population will peak at 1.4 
billion in 2025 (DeSA, 2013). The increased population 
and wealth will continue to fuel demand. This has meant 
that the patterns of Chinese grain production and con-
sumption have become major issues of interest to global 
markets and trading partners (Lam et al., 2013). Food 
trade is a potential solution that could be used by highly 
populated areas to meet their food demands (Grafton et 
al., 2015). However, commodity price spikes, restrictive 
tariffs, increasing numbers of extreme weather events 
(e.g., droughts, floods etc.), and biosecurity risks com-
promise the ability of food imports to meet China’s large 
food demand (Baldos and Hertel, 2015; Kompas et al., 
2015; Jiang et al., 2018). Furthermore, a global food 
security crisis could disrupt international food trade 
networks, which would disproportionately affect devel-
oping countries. Therefore it is important for global food 
security that China is able to maintain basic food 
self-sufficiency. The debate over the allocation and pro-
tection of arable land in China is important domestically 
as well as globally (Deng et al., 2015).  

Land use change has not only brought tremendous 
changes to the structure of surface landscapes, but has 
also affected materials and landscape energy flow (Peng 
et al., 2017a). Urbanization, is one of the crucial char-
acteristics of human development in the 20th Century 
(Cui and Wang, 2015; Peng et al., 2017b). It has led to 
grassland or farmland being converted into construction 
land, which has meant that the function of the former 
land uses has been completely lost (Peng et al., 2017b). 
Another noticeable factor affecting land use change is 
China’s ‘Grain for Green Program’ (GFGP), which aims 

to convert farmland on steep slopes to forest or grass-
land. This has significantly altered ecosystem services. 
Farmland provides limited regulation and supporting 
services compared to forest and grassland because pri-
mary products are harvested and removed from the land 
(Wang et al., 2017). Some studies have indicated that 
the GFGP could help to maintain soil organic carbon 
levels, reduce soil erosion, and restore other functions 
(Lei et al., 2012; Rao et al., 2016). According to the 
Ministry of Land and Resources of China, 0.70 million 
ha of arable land per year was consumed by other types 
of land use or destroyed by natural disasters between 
1987 and 2000 (Tan et al., 2005). At the same time, land 
competition between urban development, agricultural 
production, and environmental restoration has led to 
arable land use change in most regions of China. As 
China continues to develop, competition over limited 
arable land resources will increase (Deng et al., 2006). 
Therefore, it is crucial that the spatio-temporal dynamics 
of arable land is understood and its driving forces are 
identified (Sun et al., 2017). A greater understanding of 
the potential changes to arable land will help protect 
high-quality arable land, provide scientific guidance for 
the long-term planning of arable land, and ensure a do-
mestic food supply (Sun et al., 2015).  

Many studies have analyzed the features of arable 
loss in China resulting from urban land expansion and 
ecological restoration at different scales. For example, 
there have been studies on the differences between ur-
ban land expansion and the resultant arable land loss in 
the Beijing-Tianjin-Hebei regions (Tan et al., 2005), 
land use change in response to rapid urbanization in 
Hangzhou City (Deng et al., 2009), the effects of ur-
banization on agricultural activities (Berry, 1978), the 
impacts of the GFGP on vegetation cover in Shanxi 
Province (Zhou and Van Rompaey, 2009), and the im-
pacts of the GFGP on agricultural productivity in west 
China (Feng et al., 2005) and across the whole country 
(Deng et al., 2006). However, relatively few studies 
have analyzed the forces driving of arable land change 
in different agricultural regions in China at the national 
scale. Therefore, this study explored the patterns and 
drivers of arable land use change in China from 2000 to 
2010 using Remote Sensing and Geographic Informa-
tion System technology. The aims of this study are to: 1) 
explore the temporal and spatial characteristics of arable 
land between 2000 and 2010 in China; 2) analyze the 
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main driving forces of arable land change; and 3) under-
stand the centroid conversion trajectory between arable 
land and grain production. The results have important 
implications for the development of land use and sus-
tainable development policymaking in China. 

2  Materials and Methods 

2.1  Study area 
As we all known, agriculture is the foundation of na-
tional economy in China. Food security in China is 
bound to have a significant global implication. Among 
many factors that influence food production and supply, 
the availability of arable land is the most crucial one. To 
identify the spatial and temporal patterns of arable land 
change between 2000 and 2010 in China, we analyze the 
change of arable land through using the Chinese com-
prehensive agricultural regionalization map (Zhou et al., 
1981) (Fig. 1). Then, the arable land area in each region 
was quantified to generate a dynamic transfer matrix of 
the area, which can indicate the drivers of arable land 
changes in different regions. In addition, data on grain 
yields for the regions were obtained from the Chinese 

Statistical Yearbook (2000; 2010). 

2.2  Data source 
This study used the ecosystem classification system 
(Ouyang et al., 2016) to measure the change in arable 
land, which is different from the traditional land use and 
land cover classification. It is provided by the Institute 
of Remote Sensing Applications of Chinese Academy of 
Sciences (CAS).The arable data has a spatial resolution 
of 30 m, and covers the period of 2000 to 2010. Crop-
land has been divided into arable land and orchard. In 
our study, we only considered arable land containing 
paddy land and dry land so that the impacts of arable 
land change and its influence on grain production can be 
emphasized.  

2.3  Modeling the centroid for arable land 
In this study, the model used to determine the central 
point of arable land and grain production was based on 
the model for the center of population distribution. It 
was used to describe the spatial change in arable land 
resource and grain production (Wang et al., 2015). The 
model can be expressed as: 

 

Fig. 1  Chinese agricultural regionalization map (except Taiwan of China) (Zhou et al., 1981). NEAF: Northeast agricultural-forestry 
region; HHHA: Huang-Huai-Hai agricultural region; YRAFC: Middle-lower of Yangtze River agricultural-forestry region; SCTAF: 
South China tropical-agricultural-forestry region; SWAF: Southwest agricultural-forestry region; IMPAF: Inner Mongolia and Great 
Wall pastoral-agricultural-forestry region; LPAPF: Loess Plateau agricultural-forestry-pastoral region; GXAPF: Gan-Xin agricul-
tural-pastoral-forestry region; TPPAF: Tibetan Plateau pastoral-agricultural-forestry region. 
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where Xt represents the longitude for the center of arable 
land in the tth year; Yt represents the latitude for the 
center of arable land in the tth year; t means the research 
year; Cti is the arable land area in the study area (km2); 
Xi represents the longitude of the geometric center in the 
ith year; and Yi represents the latitude of geometric cen-
ter in the ith year. 

3  Results 

3.1  Arable land changes in China between 2000 
and 2010 
In 2010, there were 173.15 million ha of arable land in 
China (Table 1). The largest area was in NEAF, which 
accounted for 20.35% of the total arable land in China, 
followed by YRAFC (about 18.45%), HHHA (15.55%), 
and SWAF (15.46%). Arable land area in 2010 had de-
creased by about 5.92 million ha (3.31%) compared to 
that in 2000, of which the newly reclaimed arable land 
area and the arable area loss were 3.78 million ha and 
9.70 million ha, respectively. The arable land area in-
creased by 1.67 million ha or 17.78% in GXAPF, and by 
0.04 million ha or 0.11% in NEAF, while the arable land  

area in other seven agricultural regions decreased from 
2000 to 2010.  

Marked differences exist in the patterns of land use 
change and their driving forces among the agricultural 
regions (Liu et al., 2005). Between 2000 and 2010, the 
arable land area decreased in all agricultural regions 
located in the southern China. The YRAFC, SWAF, 
HHHA, and LPAPF regions were responsible for 
79.17% of the arable land loss, with decreased areas 
accounting for 28.14%, 20.10%, 19.69% and 11.24% of 
the total arable land loss, respectively (Table 2). The 
total increase in arable land was 1.67 million ha. How-
ever, 54.97% was located in GXAPF, the arid region of 
Northwest China (Fig. 2). 

3.2  Changes of Arable land  
The areas and spatial patterns of land cover change in-
dicate that the key drivers of arable land loss were ur-
banization and ecological restoration programs. The area 
of arable land converted to urban land accounted for 
43.71% (4.25 million ha) of the total loss of arable land, 
and ecological restoration programs accounted for 
45.60% (4.52 million ha). Among the ecological resto-
ration programs, 24.46% of the arable land was con-
verted to forests, 13.92% to grassland, and 7.22% to 
wetland. However, 38.62% of the new arable land was 
from grassland, 27.78% was from forest, and 23.91% 
was from wetland (Table 3). Furthermore, arable land 
losses that occurred in areas characterized by flat or 
gentle slopes (e.g., 0–6q) were mainly due to urbaniza-
tion. About 68.05% of the arable converted to urban 
land occurred on land with slopes of 0–2q. This is in 
sharp contrast to the majority of the areas converted 

 
Table 1  Arable land area and its change in different agricultural regions between 2000 and 2010 in China 

Arable land (million ha) 
Agricultural regions 

2000 2010 
Change (million ha) Change amplitude (%) 

NEAF 35.19 35.23 0.04 0.11 

HHHA 28.71 26.92 –1.79 –6.23 

YRAFC 34.14 31.95 –2.19 –6.41 

SCTAF 11.15 10.58 –0.57 –5.11 

SWAF 28.66 26.77 –1.89 –6.59 

IMPAF 13.61 13.52 –0.09 –0.66 

LPAPF 16.57 15.53 –1.04 –6.28 

GXAPF 9.39 11.06 1.67 17.78 

TPPAF 1.65 1.58 –0.07 –4.24 

Total 179.07 173.15 –5.92 –3.31 

Notes: Meanings of agricultural regions see Fig. 1. Meanings of ‘–’ is decrease. 
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Table 2  Arable land change in different agricultural regions in China (2000–2010)  

Agricultural regions 
New reclaimed arable land 

(million ha) 
Rate of increase   

(%) 
Occupied arable land 

(million ha) 
Rate of decrease  

(%) 
Net changes 
(million ha) 

NEAF 0.55 14.55 –0.50 5.15 0.05 

HHHA 0.12 3.17 –1.91 19.69 –1.78 

YRAFC 0.54 14.29 –2.73 28.14 –2.19 

SCTAF 0.24 6.35 –0.81 8.35 –0.57 

SWAF 0.06 1.59 –1.95 20.10 –1.89 

IMPAF 0.17 4.50 –0.26 2.68 –0.10 

LPAPF 0.04 1.06 –1.09 11.24 –1.05 

GXAPF 2.04 53.97 –0.37 3.81 1.67 

TPPAF 0.02 0.53 –0.08 0.82 –0.06 

Total 3.78 100.00 –9.70 100.00 –5.92 

Notes: Rate of increase is the increased area as a proportion of total area of arable land increases; rate of decrease is the decreased area as a proportion of total area 
of arable land decreases 

 

Fig. 2  Arable land change distribution map for China from 2000 to 2010 
 

from arable land to forest or grassland, which took place 
on steep slopes (e.g., >15q). Around 68.70% of arable 
land converted to forest on land with slopes greater than 
25q and located in the ecologically fragile areas of the 
southwestern China and the Loss Plateau (Fig. 3). 

The spatial pattern of the arable land that was con-
verted to urban areas showed that it was mainly distrib-
uted in eastern China (Fig. 4). Specifically, the arable 
land converted to urban land accounted for 67.58% and 
64.84% of arable land loss in YRAFC and HHHA, re-

spectively (Fig. 5). Regional development policies, such 
as the ‘Western Development Strategy’ (Lu and Deng, 
2011), the ‘Northeast Area Revitalization Plan’ (Kuang 
et al., 2016) and the ‘Rise of Central China Plan’, accel-
erated arable land loss in NEAF, IMPAF, and GXAPF 
where arable land loss was by 39.20%, 31.48% and 
30.79%, respectively (Fig. 5). 

In contrast, the ‘Sloping Land Conversion Program’ 
(SLCP) (Li et al., 2011) and the ‘Conversion of Culti-
vated Land to Wetland Program’ (CCWP) (Zhang et al., 
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Table 3  Land cover conversions between arable land and other land types 
New reclaimed arable land Conversion of arable land to other land cover types 

 Land use types  Area (million ha) (%) Land use types Area (million ha) (%) 

Forest 1.05 27.78 Forest 2.47 24.46 

Grassland 1.46 38.62 Grassland 1.35 13.92 

Wetland 0.9 23.81 Wetland 0.7 7.22 

Bare land 0.2 5.29 Urban land 4.25 43.71 

Others 0.1 4.5 Others 0.94 9.69 

Total increase 3.78 100 Total loss 9.7 100 

 

 

Fig. 3  Conversions from arable land to other land cover types with different slopes. (Rate of change is the area of specific conversion 
as a proportion of the total area of arable land conversion to other types) 
 
2011) resulted in the conversion of arable land to forest, 
grassland, and wetland. A total of 4.52 million ha was 
converted to these land types and this accounted for 
45.60% of the area of arable land lost between 2000 and 
2010. Around 45.17%, 36.49%, and 32.05% of the ar-
able land in SWAF, TPPAF and HHHA, respectively, 
was converted to forest. In LPAPF, TPPAF, IMPAF, and 
GXAPF, 65.82%, 53.90%, 46.44%, and 32.53% of the 
arable land was converted into grassland, respectively. 
In NEAF, the proportion of arable land converted to 
wetland was 26.67% (Fig. 5). 

Most of the new arable land was converted from for-
ests and grasslands, which accounted for 90.21% of the 
total increase in arable land. Most of the new arable land 
(82.81%) was in GXAPF, NEAF, and YRAFC, which 
contributed 53.97%, 14.55% and 14.29%, respectively 
(Fig.6). Large areas of forests were converted to arable 
land in SCTAF (66.13%) and SWAF (65.16%), while 
the new arable land in GXAPF (59.07%), IMPAF 
(48.27%), and LPAPF (35.09%) regions mainly came 

from grasslands. Finally, large tracts of wetland were 
converted to arable land in the NEAF (71.37%), HHHA 
(60.62%) and YRAFC (56.47%) regions (Figs.4, 6). 

3.3  Centroid movement of grain production and 
arable land in China 
Total grain yield is determined by arable land area and 
grain yield per unit area. Overall, during the study pe-
riod, as arable land in most regions decreased rapidly, it 
had showed negative contribution to total grain produc-
tion totally (Chen et al., 2011). In contrast, the grain 
yield per unit area of newly reclaimed arable land had 
little effect on total grain production. Fig. 7 shows that 
the arable land center moved to northwest from the 
middle of China and the grain production center moved 
to northeast from the middle of China, which indicated 
that the northern regions contributed more significantly 
to the domestic grain supply because they had a high 
grain yield per unit area. The misalignment between the 
distribution and trajectory of the main production 
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Fig. 4  Land conversion of arable land distribution map in China from 2000 to 2010  

 

Fig. 5  Conversions from arable land to other land cover types with different agricultural regions 
 
region and the new arable land area indicates that the 
additional arable land in the Northwest is lower quality 
than the more productive land in the Northeast. Then, in 
the occupation-compensation balance for arable land 
project, it is important that ensure the compensated land 
has equal quality and quantity with the occupied land. 

4  Discussion 

Between 2000 and 2010, the arable land area fell by 
5.92 million ha or 3.31% overall, which was caused by 

urbanization and ecological restoration programs. 
However, some regions, such as GXAPF and NEAF, 
experienced a net increase in arable land area. 

The urbanization of China has been a notable global 
event (Chen et al., 2016), and was responsible for 
43.71% of the total arable land lost from 2000 to 2010. 
Arable land consumed by urbanization was mainly flat 
or had gentle slopes, and high quality arable land. 
However, it was replaced by marginal and lower quality 
alternatives. As a consequence, not distinguishing be-
tween different types of land could result in a reduction  
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Fig. 6  Conversions from other land cover types to arable land with different agricultural regions 
 

 

Fig. 7  Centroid conversion of arable land and grain production 
in China between 2000 and 2010 
 
in production capacity (Yang and Li, 2000; Lichtenberg 
and Ding, 2008). In addition, the large scale rural to ur-
ban migration has weakened rural management because 
many operators have abandoned their farms (Liu et al., 
2014), which has further contributed to the decrease in 
high quality of arable land. Arable land loss due to eco-
logical restoration programs was mainly located in the 
SWAF and LPAPF regions and mostly occurred on 
steeply sloped (> 15q) marginal land. Long term cultiva-
tion of these areas has led to severe soil erosion and land 
degradation (Rao et al., 2014). In light of this, many 
ecological restoration programs fund farmers to abandon 
their inferior or marginal land so that it can be restored. 
In addition, the effect of ecological restoration programs 
on the national grain supply and demand balance is al-
most imperceptible (Xu et al., 2004). Furthermore, the 
restored areas have reduced soil erosion and improved 
water retention in mountainous areas (Ouyang et al., 

2016). There has also been an increased in forest cover 
(Liu, 2014; Viña et al., 2016) and the number of wildlife 
habitats (Liu et al., 2016; Tuanmu et al., 2016). It is 
possible that ecological restoration programs will have 
positive impacts on agricultural production in down-
stream regions and contribute positively to food security 
via ecosystem services. 

The new arable land in GXAPF, NEAF, and YRAFC 
was mainly converted from natural ecosystems, such as 
forest, grassland, and wetland. Specifically, the new ar-
able land was sourced from wetlands in the Sanjiang 
area of NEAF, and the coastal wetlands in YRAFC. 
Further conversion of the natural ecosystem to agricul-
ture produces low grade alternatives, at great ecological 
cost. These conversions have intensified the conflict 
between food production and natural resource conserva-
tion in China (Grau et al., 2008). Broadly, there has been 
a shift from growing crops in China’s warm and humid 
south to the less suitable cold and water limited north. 
The results also showed that China is overusing limited 
high quality arable to grow ever increasing amounts of 
food. In order to reduce the conversion pressure on ar-
able land, a new approach is needed to coordinate the 
pressure between food production, urbanization, and 
natural resource conservation. In 2006, the Central 
Government announced a conservation reserve policy 
called the ‘Redline of Arable Line’ (RAL). It aimed to 
reserve roughly 120 million ha (1800 million mu) of 
arable land for food production (Wen, 2011). However, 
it was not effective at preventing arable land loss to ur-
banization. One of the main reasons was because RAL 
only considered the quantity of arable land, not ac-
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counting for the spatial distribution or the quality of the 
arable land (Li et al., 2009). Eventually a large amount 
of high quality arable land vanished in clusters around 
urban areas and coastlines (He et al., 2014; Ma et al., 
2014). Therefore, for RAL, high quality arable land 
must be classified into tracts of land that are for perma-
nent arable use, particularly in developed regions 
(YRAFC and HHHA) and suitable for grain production 
region (NEAF). Greater efforts should be made to pro-
hibit the agricultural conversion of marginal land in the 
northwest. Together, these measures would slow the 
agricultural shift towards the northwest and buy China 
some time. 

To address conflicts between food production and 
natural resource conservation, crucial areas particularly, 
the areas that are highly important wildlife habitats, 
flood mitigation areas, water resource supplies, or sand-
storm prevention areas, should be conserved following 
the ‘Ecological Redline Policy’ (EPR) (Yang et al., 
2014; Bai et al., 2016). These areas must be protected 
from conversion to agriculture and urban areas to ensure 
the provision of ecosystem services. Finally, some con-
tinued arable land loss is inevitable and will be driven 
by rapid urbanization and ecological restoration in fu-
ture decades. Therefore, China should try to enhance the 
production capacity of arable land by improving soil 
fertility, expanding irrigation facilities, controlling soil 
pollution, and developing highly productive crop varie-
ties. 

This study had some limitations. Firstly, the classifi-
cation of arable land used in this study adopted the eco-
system classification, and this might not be totally con-
sistent with the existing national standard, which is the 
land use classification system that launched in 2007. 
Secondly, the modifiable area unit mainly used in eco-
logical and geographical studies. In this study, the agri-
cultural region was selected as the statistical unit to 
analyze arable land change. In the future, various spatial 
scales (national, regional, and local) and units (province, 
city, and county) could be apply to further research. 

5  Conclusions 

From 2000 to 2010, arable land in China decreased by 
5.92 million ha or 3.31%. Arable land increased in the 
north and decreased in the south of China. With the ex-
ception of Gan-Xin agricultural-pastoral-forestry region 

(1.67 million ha) and Northeast agricultural-forestry 
region (0.05 million ha), the other seven regions ex-
perienced a net decrease in arable land. This study iden-
tified urbanization (arable land converted to urban land) 
and ecological restoration programs (arable land con-
verted to forest, grassland and wetland) as the major 
drivers of the decrease in arable land. The conversion 
from arable land to urban land mainly occurred in 
Huang-Huai-Hai agricultural region (64.84%) and Mid-
dle-lower of Yangtze River agricultural-forestry region 
(67.58%), while arable land converted to forest and 
grassland were distributed in Southwest agricultural- 
forestry region (45.17%) and Loess Plateau agricultural- 
forestry-pastoral region (65.82%), respectively. The 
reclamation of other land cover types (e.g., forest, 
grassland, and wetland) was the primary source of the 
increased arable land. The new arable land was low 
quality land that did not make the centroid of grain pro-
duction move the same way as that of arable land. 
Therefore, we suggest that the government should pay 
close attention to the change of arable land, consider 
relevant policies to protect arable land resources, and 
ensure sustainable development that combines the need 
for food security, urbanization, and natural assets con-
servation in China. 
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